fofr / wan-14b-laezel
Wan2.1 14b fine-tuned on the Baldur's Gate 3 character Laezel
- Public
- 14 runs
-
H100
- Weights
Prediction
fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480ID92adzpesxxrma0cnh9c8ngah6cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- frames
- 81
- prompt
- a scene where LAEZEL is laughing in a cafe, warm, bokeh, fireplace
- aspect_ratio
- 16:9
- sample_shift
- 8
- sample_steps
- 30
- negative_prompt
- lora_strength_clip
- 1
- sample_guide_scale
- 5
- lora_strength_model
- 1
{ "frames": 81, "prompt": "a scene where LAEZEL is laughing in a cafe, warm, bokeh, fireplace", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/wan-14b-laezel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480", { input: { frames: 81, prompt: "a scene where LAEZEL is laughing in a cafe, warm, bokeh, fireplace", aspect_ratio: "16:9", sample_shift: 8, sample_steps: 30, negative_prompt: "", lora_strength_clip: 1, sample_guide_scale: 5, lora_strength_model: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/wan-14b-laezel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480", input={ "frames": 81, "prompt": "a scene where LAEZEL is laughing in a cafe, warm, bokeh, fireplace", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run fofr/wan-14b-laezel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480", "input": { "frames": 81, "prompt": "a scene where LAEZEL is laughing in a cafe, warm, bokeh, fireplace", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-03-12T12:36:44.307655Z", "created_at": "2025-03-12T12:33:53.647000Z", "data_removed": false, "error": null, "id": "92adzpesxxrma0cnh9c8ngah6c", "input": { "frames": 81, "prompt": "a scene where LAEZEL is laughing in a cafe, warm, bokeh, fireplace", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 }, "logs": "Random seed set to: 1997690228\n✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors already cached\nChecking inputs\n====================================\nChecking weights\n✅ wan_2.1_vae.safetensors exists in ComfyUI/models/vae\n✅ umt5_xxl_fp16.safetensors exists in ComfyUI/models/text_encoders\n✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors exists in loras directory\n✅ wan2.1_t2v_14B_bf16.safetensors exists in ComfyUI/models/diffusion_models\n====================================\nRunning workflow\n[ComfyUI] got prompt\nExecuting node 6, title: CLIP Text Encode (Positive Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\n[ComfyUI]\n[ComfyUI] 0%| | 0/30 [00:00<?, ?it/s]\n[ComfyUI] Resetting TeaCache state\n[ComfyUI]\n[ComfyUI] 3%|▎ | 1/30 [00:07<03:28, 7.20s/it]\n[ComfyUI] 7%|▋ | 2/30 [00:16<04:00, 8.59s/it]\n[ComfyUI] 10%|█ | 3/30 [00:26<04:03, 9.02s/it]\n[ComfyUI] TeaCache: Initialized\n[ComfyUI]\n[ComfyUI] 13%|█▎ | 4/30 [00:38<04:26, 10.26s/it]\n[ComfyUI] 20%|██ | 6/30 [00:48<02:58, 7.45s/it]\n[ComfyUI] 27%|██▋ | 8/30 [00:58<02:20, 6.38s/it]\n[ComfyUI] 33%|███▎ | 10/30 [01:08<01:56, 5.84s/it]\n[ComfyUI] 40%|████ | 12/30 [01:18<01:39, 5.53s/it]\n[ComfyUI] 47%|████▋ | 14/30 [01:28<01:25, 5.34s/it]\n[ComfyUI] 53%|█████▎ | 16/30 [01:38<01:13, 5.22s/it]\n[ComfyUI] 60%|██████ | 18/30 [01:48<01:01, 5.15s/it]\n[ComfyUI] 67%|██████▋ | 20/30 [01:57<00:50, 5.10s/it]\n[ComfyUI] 73%|███████▎ | 22/30 [02:07<00:40, 5.06s/it]\n[ComfyUI] 80%|████████ | 24/30 [02:17<00:30, 5.04s/it]\n[ComfyUI] 87%|████████▋ | 26/30 [02:27<00:20, 5.02s/it]\n[ComfyUI] 93%|█████████▎| 28/30 [02:37<00:10, 5.01s/it]\n[ComfyUI] 100%|██████████| 30/30 [02:47<00:00, 5.00s/it]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 50, title: Video Combine 🎥🅥🅗🅢, class type: VHS_VideoCombine\n[ComfyUI] 100%|██████████| 30/30 [02:47<00:00, 5.59s/it]\n[ComfyUI] Prompt executed in 170.48 seconds\noutputs: {'50': {'gifs': [{'filename': 'R8_Wan_00001.mp4', 'subfolder': '', 'type': 'output', 'format': 'video/h264-mp4', 'frame_rate': 16.0, 'workflow': 'R8_Wan_00001.png', 'fullpath': '/tmp/outputs/R8_Wan_00001.mp4'}]}}\n====================================\nR8_Wan_00001.png\nR8_Wan_00001.mp4", "metrics": { "predict_time": 170.654119001, "total_time": 170.660655 }, "output": [ "https://replicate.delivery/xezq/i9enM2xXXNT1Siglhh15IvZvpoMRlytk2sqegWUz6rpcHzXUA/R8_Wan_00001.mp4" ], "started_at": "2025-03-12T12:33:53.653536Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-iif4acjobgfu74d7pkvjaocmk5qnkdslud4d4td3i4pegaoczzfa", "get": "https://api.replicate.com/v1/predictions/92adzpesxxrma0cnh9c8ngah6c", "cancel": "https://api.replicate.com/v1/predictions/92adzpesxxrma0cnh9c8ngah6c/cancel" }, "version": "47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480" }
Generated inRandom seed set to: 1997690228 ✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors already cached Checking inputs ==================================== Checking weights ✅ wan_2.1_vae.safetensors exists in ComfyUI/models/vae ✅ umt5_xxl_fp16.safetensors exists in ComfyUI/models/text_encoders ✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors exists in loras directory ✅ wan2.1_t2v_14B_bf16.safetensors exists in ComfyUI/models/diffusion_models ==================================== Running workflow [ComfyUI] got prompt Executing node 6, title: CLIP Text Encode (Positive Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler [ComfyUI] [ComfyUI] 0%| | 0/30 [00:00<?, ?it/s] [ComfyUI] Resetting TeaCache state [ComfyUI] [ComfyUI] 3%|▎ | 1/30 [00:07<03:28, 7.20s/it] [ComfyUI] 7%|▋ | 2/30 [00:16<04:00, 8.59s/it] [ComfyUI] 10%|█ | 3/30 [00:26<04:03, 9.02s/it] [ComfyUI] TeaCache: Initialized [ComfyUI] [ComfyUI] 13%|█▎ | 4/30 [00:38<04:26, 10.26s/it] [ComfyUI] 20%|██ | 6/30 [00:48<02:58, 7.45s/it] [ComfyUI] 27%|██▋ | 8/30 [00:58<02:20, 6.38s/it] [ComfyUI] 33%|███▎ | 10/30 [01:08<01:56, 5.84s/it] [ComfyUI] 40%|████ | 12/30 [01:18<01:39, 5.53s/it] [ComfyUI] 47%|████▋ | 14/30 [01:28<01:25, 5.34s/it] [ComfyUI] 53%|█████▎ | 16/30 [01:38<01:13, 5.22s/it] [ComfyUI] 60%|██████ | 18/30 [01:48<01:01, 5.15s/it] [ComfyUI] 67%|██████▋ | 20/30 [01:57<00:50, 5.10s/it] [ComfyUI] 73%|███████▎ | 22/30 [02:07<00:40, 5.06s/it] [ComfyUI] 80%|████████ | 24/30 [02:17<00:30, 5.04s/it] [ComfyUI] 87%|████████▋ | 26/30 [02:27<00:20, 5.02s/it] [ComfyUI] 93%|█████████▎| 28/30 [02:37<00:10, 5.01s/it] [ComfyUI] 100%|██████████| 30/30 [02:47<00:00, 5.00s/it] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 50, title: Video Combine 🎥🅥🅗🅢, class type: VHS_VideoCombine [ComfyUI] 100%|██████████| 30/30 [02:47<00:00, 5.59s/it] [ComfyUI] Prompt executed in 170.48 seconds outputs: {'50': {'gifs': [{'filename': 'R8_Wan_00001.mp4', 'subfolder': '', 'type': 'output', 'format': 'video/h264-mp4', 'frame_rate': 16.0, 'workflow': 'R8_Wan_00001.png', 'fullpath': '/tmp/outputs/R8_Wan_00001.mp4'}]}} ==================================== R8_Wan_00001.png R8_Wan_00001.mp4
Prediction
fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480IDqtnfdbpye5rma0cnh9nazza6s8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- frames
- 81
- prompt
- a live action movie scene featuring LAEZEL in armor
- aspect_ratio
- 16:9
- sample_shift
- 8
- sample_steps
- 30
- negative_prompt
- lora_strength_clip
- 1
- sample_guide_scale
- 5
- lora_strength_model
- 1
{ "frames": 81, "prompt": "a live action movie scene featuring LAEZEL in armor", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/wan-14b-laezel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480", { input: { frames: 81, prompt: "a live action movie scene featuring LAEZEL in armor", aspect_ratio: "16:9", sample_shift: 8, sample_steps: 30, negative_prompt: "", lora_strength_clip: 1, sample_guide_scale: 5, lora_strength_model: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/wan-14b-laezel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480", input={ "frames": 81, "prompt": "a live action movie scene featuring LAEZEL in armor", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run fofr/wan-14b-laezel using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fofr/wan-14b-laezel:47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480", "input": { "frames": 81, "prompt": "a live action movie scene featuring LAEZEL in armor", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-03-12T12:56:26.336607Z", "created_at": "2025-03-12T12:53:34.449000Z", "data_removed": false, "error": null, "id": "qtnfdbpye5rma0cnh9nazza6s8", "input": { "frames": 81, "prompt": "a live action movie scene featuring LAEZEL in armor", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "negative_prompt": "", "lora_strength_clip": 1, "sample_guide_scale": 5, "lora_strength_model": 1 }, "logs": "Random seed set to: 527776387\n✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors already cached\nChecking inputs\n====================================\nChecking weights\n✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors exists in loras directory\n✅ wan_2.1_vae.safetensors exists in ComfyUI/models/vae\n✅ wan2.1_t2v_14B_bf16.safetensors exists in ComfyUI/models/diffusion_models\n✅ umt5_xxl_fp16.safetensors exists in ComfyUI/models/text_encoders\n====================================\nRunning workflow\n[ComfyUI] got prompt\nExecuting node 6, title: CLIP Text Encode (Positive Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\n[ComfyUI]\n[ComfyUI] 0%| | 0/30 [00:00<?, ?it/s]\n[ComfyUI] Resetting TeaCache state\n[ComfyUI]\n[ComfyUI] 3%|▎ | 1/30 [00:07<03:30, 7.25s/it]\n[ComfyUI] 7%|▋ | 2/30 [00:16<04:01, 8.62s/it]\n[ComfyUI] 10%|█ | 3/30 [00:26<04:04, 9.07s/it]\n[ComfyUI] TeaCache: Initialized\n[ComfyUI]\n[ComfyUI] 13%|█▎ | 4/30 [00:38<04:28, 10.32s/it]\n[ComfyUI] 20%|██ | 6/30 [00:48<03:00, 7.53s/it]\n[ComfyUI] 27%|██▋ | 8/30 [00:58<02:21, 6.44s/it]\n[ComfyUI] 33%|███▎ | 10/30 [01:08<01:57, 5.90s/it]\n[ComfyUI] 40%|████ | 12/30 [01:18<01:40, 5.58s/it]\n[ComfyUI] 47%|████▋ | 14/30 [01:28<01:26, 5.39s/it]\n[ComfyUI] 53%|█████▎ | 16/30 [01:38<01:13, 5.25s/it]\n[ComfyUI] 60%|██████ | 18/30 [01:48<01:02, 5.17s/it]\n[ComfyUI] 67%|██████▋ | 20/30 [01:58<00:51, 5.12s/it]\n[ComfyUI] 73%|███████▎ | 22/30 [02:08<00:40, 5.08s/it]\n[ComfyUI] 80%|████████ | 24/30 [02:18<00:30, 5.05s/it]\n[ComfyUI] 87%|████████▋ | 26/30 [02:28<00:20, 5.04s/it]\n[ComfyUI] 93%|█████████▎| 28/30 [02:38<00:10, 5.03s/it]\n[ComfyUI] 100%|██████████| 30/30 [02:48<00:00, 5.02s/it]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 50, title: Video Combine 🎥🅥🅗🅢, class type: VHS_VideoCombine\n[ComfyUI] 100%|██████████| 30/30 [02:48<00:00, 5.63s/it]\n[ComfyUI] Prompt executed in 171.70 seconds\noutputs: {'50': {'gifs': [{'filename': 'R8_Wan_00001.mp4', 'subfolder': '', 'type': 'output', 'format': 'video/h264-mp4', 'frame_rate': 16.0, 'workflow': 'R8_Wan_00001.png', 'fullpath': '/tmp/outputs/R8_Wan_00001.mp4'}]}}\n====================================\nR8_Wan_00001.png\nR8_Wan_00001.mp4", "metrics": { "predict_time": 171.880003997, "total_time": 171.887607 }, "output": [ "https://replicate.delivery/xezq/6ZCqWH9NWIKzOd1e3vwfOM6ei1E17u2AN03KfZv5LS8qnNfiC/R8_Wan_00001.mp4" ], "started_at": "2025-03-12T12:53:34.456603Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-tyfdvdl3juvakpgfy7xbnsgsii32k2cn7vhogbfj33epv2naqv2a", "get": "https://api.replicate.com/v1/predictions/qtnfdbpye5rma0cnh9nazza6s8", "cancel": "https://api.replicate.com/v1/predictions/qtnfdbpye5rma0cnh9nazza6s8/cancel" }, "version": "47f42ccb2ed4659754ba103fb0c915d0cce85532af6137fc68a2375eb4c60480" }
Generated inRandom seed set to: 527776387 ✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors already cached Checking inputs ==================================== Checking weights ✅ 49be09c47a6472548969c7eb1d45d1b9.safetensors exists in loras directory ✅ wan_2.1_vae.safetensors exists in ComfyUI/models/vae ✅ wan2.1_t2v_14B_bf16.safetensors exists in ComfyUI/models/diffusion_models ✅ umt5_xxl_fp16.safetensors exists in ComfyUI/models/text_encoders ==================================== Running workflow [ComfyUI] got prompt Executing node 6, title: CLIP Text Encode (Positive Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler [ComfyUI] [ComfyUI] 0%| | 0/30 [00:00<?, ?it/s] [ComfyUI] Resetting TeaCache state [ComfyUI] [ComfyUI] 3%|▎ | 1/30 [00:07<03:30, 7.25s/it] [ComfyUI] 7%|▋ | 2/30 [00:16<04:01, 8.62s/it] [ComfyUI] 10%|█ | 3/30 [00:26<04:04, 9.07s/it] [ComfyUI] TeaCache: Initialized [ComfyUI] [ComfyUI] 13%|█▎ | 4/30 [00:38<04:28, 10.32s/it] [ComfyUI] 20%|██ | 6/30 [00:48<03:00, 7.53s/it] [ComfyUI] 27%|██▋ | 8/30 [00:58<02:21, 6.44s/it] [ComfyUI] 33%|███▎ | 10/30 [01:08<01:57, 5.90s/it] [ComfyUI] 40%|████ | 12/30 [01:18<01:40, 5.58s/it] [ComfyUI] 47%|████▋ | 14/30 [01:28<01:26, 5.39s/it] [ComfyUI] 53%|█████▎ | 16/30 [01:38<01:13, 5.25s/it] [ComfyUI] 60%|██████ | 18/30 [01:48<01:02, 5.17s/it] [ComfyUI] 67%|██████▋ | 20/30 [01:58<00:51, 5.12s/it] [ComfyUI] 73%|███████▎ | 22/30 [02:08<00:40, 5.08s/it] [ComfyUI] 80%|████████ | 24/30 [02:18<00:30, 5.05s/it] [ComfyUI] 87%|████████▋ | 26/30 [02:28<00:20, 5.04s/it] [ComfyUI] 93%|█████████▎| 28/30 [02:38<00:10, 5.03s/it] [ComfyUI] 100%|██████████| 30/30 [02:48<00:00, 5.02s/it] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 50, title: Video Combine 🎥🅥🅗🅢, class type: VHS_VideoCombine [ComfyUI] 100%|██████████| 30/30 [02:48<00:00, 5.63s/it] [ComfyUI] Prompt executed in 171.70 seconds outputs: {'50': {'gifs': [{'filename': 'R8_Wan_00001.mp4', 'subfolder': '', 'type': 'output', 'format': 'video/h264-mp4', 'frame_rate': 16.0, 'workflow': 'R8_Wan_00001.png', 'fullpath': '/tmp/outputs/R8_Wan_00001.mp4'}]}} ==================================== R8_Wan_00001.png R8_Wan_00001.mp4
Want to make some of these yourself?
Run this model