lucataco
/
flux-dalgona
Flux finetune of Dalgona cookies
- Public
- 82 runs
-
H100
Prediction
lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1IDczse4e6k4hrme0cm180rzr04hwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a DALGONA cookie in a tin, with the word "REPLICATE" on top
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a DALGONA cookie in a tin, with the word \"REPLICATE\" on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", { input: { model: "dev", prompt: "a DALGONA cookie in a tin, with the word \"REPLICATE\" on top", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", input={ "model": "dev", "prompt": "a DALGONA cookie in a tin, with the word \"REPLICATE\" on top", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with the word \\"REPLICATE\\" on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T21:24:49.324095Z", "created_at": "2024-12-27T21:24:39.332000Z", "data_removed": false, "error": null, "id": "czse4e6k4hrme0cm180rzr04hw", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with the word \"REPLICATE\" on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2024-12-27 21:24:40.686 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:24:40.686 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 92%|█████████▏| 280/304 [00:00<00:00, 2788.41it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2652.37it/s]\n2024-12-27 21:24:40.801 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s\nfree=30037206175744\nDownloading weights\n2024-12-27T21:24:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp94g30dmg/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\n2024-12-27T21:24:42Z | INFO | [ Complete ] dest=/tmp/tmp94g30dmg/weights size=\"172 MB\" total_elapsed=2.124s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\nDownloaded weights in 2.15s\n2024-12-27 21:24:42.950 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1\n2024-12-27 21:24:43.021 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2024-12-27 21:24:43.021 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:24:43.022 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2805.58it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2671.72it/s]\n2024-12-27 21:24:43.136 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 59768\n0it [00:00, ?it/s]\n1it [00:00, 8.38it/s]\n2it [00:00, 5.81it/s]\n3it [00:00, 5.31it/s]\n4it [00:00, 5.10it/s]\n5it [00:00, 4.92it/s]\n6it [00:01, 4.84it/s]\n7it [00:01, 4.82it/s]\n8it [00:01, 4.81it/s]\n9it [00:01, 4.79it/s]\n10it [00:02, 4.76it/s]\n11it [00:02, 4.75it/s]\n12it [00:02, 4.75it/s]\n13it [00:02, 4.76it/s]\n14it [00:02, 4.76it/s]\n15it [00:03, 4.73it/s]\n16it [00:03, 4.73it/s]\n17it [00:03, 4.73it/s]\n18it [00:03, 4.74it/s]\n19it [00:03, 4.74it/s]\n20it [00:04, 4.74it/s]\n21it [00:04, 4.74it/s]\n22it [00:04, 4.74it/s]\n23it [00:04, 4.74it/s]\n24it [00:04, 4.74it/s]\n25it [00:05, 4.74it/s]\n26it [00:05, 4.74it/s]\n27it [00:05, 4.73it/s]\n28it [00:05, 4.74it/s]\n28it [00:05, 4.82it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 8.637053994, "total_time": 9.992095 }, "output": [ "https://replicate.delivery/xezq/qNIp3nrIVuYfdyosBlQfbCMQtU1MmGO0WjXExT8gxXYh0MfnA/out-0.webp" ], "started_at": "2024-12-27T21:24:40.687041Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-bzyqt5mgmxxeea4lrgwynnb4ohdlb3s62or3cxgki774xcdc5lya", "get": "https://api.replicate.com/v1/predictions/czse4e6k4hrme0cm180rzr04hw", "cancel": "https://api.replicate.com/v1/predictions/czse4e6k4hrme0cm180rzr04hw/cancel" }, "version": "491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1" }
Generated in2024-12-27 21:24:40.686 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:24:40.686 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 92%|█████████▏| 280/304 [00:00<00:00, 2788.41it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2652.37it/s] 2024-12-27 21:24:40.801 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s free=30037206175744 Downloading weights 2024-12-27T21:24:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp94g30dmg/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar 2024-12-27T21:24:42Z | INFO | [ Complete ] dest=/tmp/tmp94g30dmg/weights size="172 MB" total_elapsed=2.124s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar Downloaded weights in 2.15s 2024-12-27 21:24:42.950 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1 2024-12-27 21:24:43.021 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2024-12-27 21:24:43.021 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:24:43.022 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2805.58it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2671.72it/s] 2024-12-27 21:24:43.136 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s Using seed: 59768 0it [00:00, ?it/s] 1it [00:00, 8.38it/s] 2it [00:00, 5.81it/s] 3it [00:00, 5.31it/s] 4it [00:00, 5.10it/s] 5it [00:00, 4.92it/s] 6it [00:01, 4.84it/s] 7it [00:01, 4.82it/s] 8it [00:01, 4.81it/s] 9it [00:01, 4.79it/s] 10it [00:02, 4.76it/s] 11it [00:02, 4.75it/s] 12it [00:02, 4.75it/s] 13it [00:02, 4.76it/s] 14it [00:02, 4.76it/s] 15it [00:03, 4.73it/s] 16it [00:03, 4.73it/s] 17it [00:03, 4.73it/s] 18it [00:03, 4.74it/s] 19it [00:03, 4.74it/s] 20it [00:04, 4.74it/s] 21it [00:04, 4.74it/s] 22it [00:04, 4.74it/s] 23it [00:04, 4.74it/s] 24it [00:04, 4.74it/s] 25it [00:05, 4.74it/s] 26it [00:05, 4.74it/s] 27it [00:05, 4.73it/s] 28it [00:05, 4.74it/s] 28it [00:05, 4.82it/s] Total safe images: 1 out of 1
Prediction
lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1IDxg9qeana4srm80cm181tdqscg4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a DALGONA cookie in a tin, with an elephant shape on top
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a DALGONA cookie in a tin, with an elephant shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", { input: { model: "dev", prompt: "a DALGONA cookie in a tin, with an elephant shape on top", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", input={ "model": "dev", "prompt": "a DALGONA cookie in a tin, with an elephant shape on top", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with an elephant shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T21:26:50.343849Z", "created_at": "2024-12-27T21:26:39.910000Z", "data_removed": false, "error": null, "id": "xg9qeana4srm80cm181tdqscg4", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with an elephant shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2024-12-27 21:26:40.497 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:26:40.497 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2736.32it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2596.52it/s]\n2024-12-27 21:26:40.614 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s\nfree=30183013171200\nDownloading weights\n2024-12-27T21:26:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpt1y6cv27/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\n2024-12-27T21:26:43Z | INFO | [ Complete ] dest=/tmp/tmpt1y6cv27/weights size=\"172 MB\" total_elapsed=3.345s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\nDownloaded weights in 3.37s\n2024-12-27 21:26:43.983 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1\n2024-12-27 21:26:44.051 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2024-12-27 21:26:44.052 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:26:44.052 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 91%|█████████ | 276/304 [00:00<00:00, 2732.52it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2609.85it/s]\n2024-12-27 21:26:44.169 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 58848\n0it [00:00, ?it/s]\n1it [00:00, 8.34it/s]\n2it [00:00, 5.79it/s]\n3it [00:00, 5.28it/s]\n4it [00:00, 5.08it/s]\n5it [00:00, 4.94it/s]\n6it [00:01, 4.86it/s]\n7it [00:01, 4.82it/s]\n8it [00:01, 4.81it/s]\n9it [00:01, 4.80it/s]\n10it [00:02, 4.77it/s]\n11it [00:02, 4.76it/s]\n12it [00:02, 4.75it/s]\n13it [00:02, 4.75it/s]\n14it [00:02, 4.75it/s]\n15it [00:03, 4.75it/s]\n16it [00:03, 4.74it/s]\n17it [00:03, 4.75it/s]\n18it [00:03, 4.75it/s]\n19it [00:03, 4.74it/s]\n20it [00:04, 4.75it/s]\n21it [00:04, 4.75it/s]\n22it [00:04, 4.74it/s]\n23it [00:04, 4.74it/s]\n24it [00:04, 4.73it/s]\n25it [00:05, 4.73it/s]\n26it [00:05, 4.73it/s]\n27it [00:05, 4.74it/s]\n28it [00:05, 4.74it/s]\n28it [00:05, 4.82it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 9.846495991, "total_time": 10.433849 }, "output": [ "https://replicate.delivery/xezq/4eCIqMA4NAQkOC3kqa6dSGfrcitYeK57YOKVEhpQk9u1sZePB/out-0.webp" ], "started_at": "2024-12-27T21:26:40.497353Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-vow6eqq6d42yqdz7pqegzbjempdehwx5zeq5633jxbpkfb36xdfa", "get": "https://api.replicate.com/v1/predictions/xg9qeana4srm80cm181tdqscg4", "cancel": "https://api.replicate.com/v1/predictions/xg9qeana4srm80cm181tdqscg4/cancel" }, "version": "491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1" }
Generated in2024-12-27 21:26:40.497 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:26:40.497 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2736.32it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2596.52it/s] 2024-12-27 21:26:40.614 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s free=30183013171200 Downloading weights 2024-12-27T21:26:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpt1y6cv27/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar 2024-12-27T21:26:43Z | INFO | [ Complete ] dest=/tmp/tmpt1y6cv27/weights size="172 MB" total_elapsed=3.345s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar Downloaded weights in 3.37s 2024-12-27 21:26:43.983 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1 2024-12-27 21:26:44.051 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2024-12-27 21:26:44.052 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:26:44.052 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 91%|█████████ | 276/304 [00:00<00:00, 2732.52it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2609.85it/s] 2024-12-27 21:26:44.169 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s Using seed: 58848 0it [00:00, ?it/s] 1it [00:00, 8.34it/s] 2it [00:00, 5.79it/s] 3it [00:00, 5.28it/s] 4it [00:00, 5.08it/s] 5it [00:00, 4.94it/s] 6it [00:01, 4.86it/s] 7it [00:01, 4.82it/s] 8it [00:01, 4.81it/s] 9it [00:01, 4.80it/s] 10it [00:02, 4.77it/s] 11it [00:02, 4.76it/s] 12it [00:02, 4.75it/s] 13it [00:02, 4.75it/s] 14it [00:02, 4.75it/s] 15it [00:03, 4.75it/s] 16it [00:03, 4.74it/s] 17it [00:03, 4.75it/s] 18it [00:03, 4.75it/s] 19it [00:03, 4.74it/s] 20it [00:04, 4.75it/s] 21it [00:04, 4.75it/s] 22it [00:04, 4.74it/s] 23it [00:04, 4.74it/s] 24it [00:04, 4.73it/s] 25it [00:05, 4.73it/s] 26it [00:05, 4.73it/s] 27it [00:05, 4.74it/s] 28it [00:05, 4.74it/s] 28it [00:05, 4.82it/s] Total safe images: 1 out of 1
Prediction
lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1IDbmr223998drmc0cm182b3jv82cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a DALGONA cookie in a tin, with a lion shape on top
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a lion shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", { input: { model: "dev", prompt: "a DALGONA cookie in a tin, with a lion shape on top", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", input={ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a lion shape on top", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a lion shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T21:27:22.125661Z", "created_at": "2024-12-27T21:27:12.451000Z", "data_removed": false, "error": null, "id": "bmr223998drmc0cm182b3jv82c", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a lion shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2024-12-27 21:27:14.463 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:27:14.463 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 96%|█████████▌| 291/304 [00:00<00:00, 2895.24it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2848.61it/s]\n2024-12-27 21:27:14.570 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=30283274035200\nDownloading weights\n2024-12-27T21:27:14Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpyezkpxx6/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\n2024-12-27T21:27:15Z | INFO | [ Complete ] dest=/tmp/tmpyezkpxx6/weights size=\"172 MB\" total_elapsed=1.281s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\nDownloaded weights in 1.30s\n2024-12-27 21:27:15.875 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1\n2024-12-27 21:27:15.944 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2024-12-27 21:27:15.944 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:27:15.944 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2792.79it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2707.61it/s]\n2024-12-27 21:27:16.057 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s\nUsing seed: 27540\n0it [00:00, ?it/s]\n1it [00:00, 8.42it/s]\n2it [00:00, 5.90it/s]\n3it [00:00, 5.38it/s]\n4it [00:00, 5.16it/s]\n5it [00:00, 5.04it/s]\n6it [00:01, 4.95it/s]\n7it [00:01, 4.91it/s]\n8it [00:01, 4.89it/s]\n9it [00:01, 4.88it/s]\n10it [00:01, 4.86it/s]\n11it [00:02, 4.84it/s]\n12it [00:02, 4.84it/s]\n13it [00:02, 4.84it/s]\n14it [00:02, 4.84it/s]\n15it [00:03, 4.83it/s]\n16it [00:03, 4.83it/s]\n17it [00:03, 4.83it/s]\n18it [00:03, 4.83it/s]\n19it [00:03, 4.83it/s]\n20it [00:04, 4.83it/s]\n21it [00:04, 4.82it/s]\n22it [00:04, 4.81it/s]\n23it [00:04, 4.82it/s]\n24it [00:04, 4.81it/s]\n25it [00:05, 4.82it/s]\n26it [00:05, 4.82it/s]\n27it [00:05, 4.82it/s]\n28it [00:05, 4.83it/s]\n28it [00:05, 4.90it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 7.661395959, "total_time": 9.674661 }, "output": [ "https://replicate.delivery/xezq/QIA9iGUIAF50CRok5RBfJuYrnMW2ErtlGwqn8GsC3JEdbmfTA/out-0.webp" ], "started_at": "2024-12-27T21:27:14.464265Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-jljozeih7xlv66h7rmjijp6nl654pxrdxxbsxtxumca64ubyo4tq", "get": "https://api.replicate.com/v1/predictions/bmr223998drmc0cm182b3jv82c", "cancel": "https://api.replicate.com/v1/predictions/bmr223998drmc0cm182b3jv82c/cancel" }, "version": "491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1" }
Generated in2024-12-27 21:27:14.463 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:27:14.463 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 96%|█████████▌| 291/304 [00:00<00:00, 2895.24it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2848.61it/s] 2024-12-27 21:27:14.570 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s free=30283274035200 Downloading weights 2024-12-27T21:27:14Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpyezkpxx6/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar 2024-12-27T21:27:15Z | INFO | [ Complete ] dest=/tmp/tmpyezkpxx6/weights size="172 MB" total_elapsed=1.281s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar Downloaded weights in 1.30s 2024-12-27 21:27:15.875 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1 2024-12-27 21:27:15.944 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2024-12-27 21:27:15.944 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:27:15.944 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2792.79it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2707.61it/s] 2024-12-27 21:27:16.057 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s Using seed: 27540 0it [00:00, ?it/s] 1it [00:00, 8.42it/s] 2it [00:00, 5.90it/s] 3it [00:00, 5.38it/s] 4it [00:00, 5.16it/s] 5it [00:00, 5.04it/s] 6it [00:01, 4.95it/s] 7it [00:01, 4.91it/s] 8it [00:01, 4.89it/s] 9it [00:01, 4.88it/s] 10it [00:01, 4.86it/s] 11it [00:02, 4.84it/s] 12it [00:02, 4.84it/s] 13it [00:02, 4.84it/s] 14it [00:02, 4.84it/s] 15it [00:03, 4.83it/s] 16it [00:03, 4.83it/s] 17it [00:03, 4.83it/s] 18it [00:03, 4.83it/s] 19it [00:03, 4.83it/s] 20it [00:04, 4.83it/s] 21it [00:04, 4.82it/s] 22it [00:04, 4.81it/s] 23it [00:04, 4.82it/s] 24it [00:04, 4.81it/s] 25it [00:05, 4.82it/s] 26it [00:05, 4.82it/s] 27it [00:05, 4.82it/s] 28it [00:05, 4.83it/s] 28it [00:05, 4.90it/s] Total safe images: 1 out of 1
Prediction
lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1IDv5pr37g7hsrme0cm183ap3wr00StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a DALGONA cookie in a tin, with a penguin shape on top
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a penguin shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", { input: { model: "dev", prompt: "a DALGONA cookie in a tin, with a penguin shape on top", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", input={ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a penguin shape on top", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a penguin shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T21:29:23.694613Z", "created_at": "2024-12-27T21:29:14.894000Z", "data_removed": false, "error": null, "id": "v5pr37g7hsrme0cm183ap3wr00", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a penguin shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2024-12-27 21:29:14.917 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:29:14.918 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 91%|█████████ | 277/304 [00:00<00:00, 2764.25it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2690.62it/s]\n2024-12-27 21:29:15.031 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=30274145345536\nDownloading weights\n2024-12-27T21:29:15Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp67txdbdi/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\n2024-12-27T21:29:17Z | INFO | [ Complete ] dest=/tmp/tmp67txdbdi/weights size=\"172 MB\" total_elapsed=2.351s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\nDownloaded weights in 2.37s\n2024-12-27 21:29:17.405 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1\n2024-12-27 21:29:17.473 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2024-12-27 21:29:17.473 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-27 21:29:17.473 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 91%|█████████ | 277/304 [00:00<00:00, 2768.97it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2694.90it/s]\n2024-12-27 21:29:17.586 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s\nUsing seed: 60753\n0it [00:00, ?it/s]\n1it [00:00, 8.38it/s]\n2it [00:00, 5.85it/s]\n3it [00:00, 5.34it/s]\n4it [00:00, 5.14it/s]\n5it [00:00, 5.01it/s]\n6it [00:01, 4.91it/s]\n7it [00:01, 4.87it/s]\n8it [00:01, 4.84it/s]\n9it [00:01, 4.83it/s]\n10it [00:01, 4.82it/s]\n11it [00:02, 4.81it/s]\n12it [00:02, 4.80it/s]\n13it [00:02, 4.80it/s]\n14it [00:02, 4.81it/s]\n15it [00:03, 4.80it/s]\n16it [00:03, 4.80it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.80it/s]\n19it [00:03, 4.79it/s]\n20it [00:04, 4.79it/s]\n21it [00:04, 4.78it/s]\n22it [00:04, 4.78it/s]\n23it [00:04, 4.79it/s]\n24it [00:04, 4.79it/s]\n25it [00:05, 4.79it/s]\n26it [00:05, 4.80it/s]\n27it [00:05, 4.79it/s]\n28it [00:05, 4.79it/s]\n28it [00:05, 4.87it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 8.775819615, "total_time": 8.800613 }, "output": [ "https://replicate.delivery/xezq/kDbZnZdLE2reZ6ygLDoS108IiWX03OPIiFssfW9e8HrmxZePB/out-0.webp" ], "started_at": "2024-12-27T21:29:14.918793Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-hkvg4gjig6p77m4dcmsa3dooxii7xk2uty6oqucaykfn4lij5kia", "get": "https://api.replicate.com/v1/predictions/v5pr37g7hsrme0cm183ap3wr00", "cancel": "https://api.replicate.com/v1/predictions/v5pr37g7hsrme0cm183ap3wr00/cancel" }, "version": "491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1" }
Generated in2024-12-27 21:29:14.917 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:29:14.918 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 91%|█████████ | 277/304 [00:00<00:00, 2764.25it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2690.62it/s] 2024-12-27 21:29:15.031 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s free=30274145345536 Downloading weights 2024-12-27T21:29:15Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp67txdbdi/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar 2024-12-27T21:29:17Z | INFO | [ Complete ] dest=/tmp/tmp67txdbdi/weights size="172 MB" total_elapsed=2.351s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar Downloaded weights in 2.37s 2024-12-27 21:29:17.405 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1 2024-12-27 21:29:17.473 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2024-12-27 21:29:17.473 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-27 21:29:17.473 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 91%|█████████ | 277/304 [00:00<00:00, 2768.97it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2694.90it/s] 2024-12-27 21:29:17.586 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s Using seed: 60753 0it [00:00, ?it/s] 1it [00:00, 8.38it/s] 2it [00:00, 5.85it/s] 3it [00:00, 5.34it/s] 4it [00:00, 5.14it/s] 5it [00:00, 5.01it/s] 6it [00:01, 4.91it/s] 7it [00:01, 4.87it/s] 8it [00:01, 4.84it/s] 9it [00:01, 4.83it/s] 10it [00:01, 4.82it/s] 11it [00:02, 4.81it/s] 12it [00:02, 4.80it/s] 13it [00:02, 4.80it/s] 14it [00:02, 4.81it/s] 15it [00:03, 4.80it/s] 16it [00:03, 4.80it/s] 17it [00:03, 4.80it/s] 18it [00:03, 4.80it/s] 19it [00:03, 4.79it/s] 20it [00:04, 4.79it/s] 21it [00:04, 4.78it/s] 22it [00:04, 4.78it/s] 23it [00:04, 4.79it/s] 24it [00:04, 4.79it/s] 25it [00:05, 4.79it/s] 26it [00:05, 4.80it/s] 27it [00:05, 4.79it/s] 28it [00:05, 4.79it/s] 28it [00:05, 4.87it/s] Total safe images: 1 out of 1
Prediction
lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1ID35rbq9wqdsrme0cm184r8rhkncStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a DALGONA cookie in a tin, with a baby hippo shape on top
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a baby hippo shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", { input: { model: "dev", prompt: "a DALGONA cookie in a tin, with a baby hippo shape on top", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", input={ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a baby hippo shape on top", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a baby hippo shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-27T21:33:14.379971Z", "created_at": "2024-12-27T21:33:08.334000Z", "data_removed": false, "error": null, "id": "35rbq9wqdsrme0cm184r8rhknc", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a baby hippo shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Lora https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar already loaded\nUsing seed: 53199\n0it [00:00, ?it/s]\n1it [00:00, 8.35it/s]\n2it [00:00, 5.85it/s]\n3it [00:00, 5.34it/s]\n4it [00:00, 5.12it/s]\n5it [00:00, 5.00it/s]\n6it [00:01, 4.93it/s]\n7it [00:01, 4.89it/s]\n8it [00:01, 4.87it/s]\n9it [00:01, 4.85it/s]\n10it [00:01, 4.84it/s]\n11it [00:02, 4.82it/s]\n12it [00:02, 4.82it/s]\n13it [00:02, 4.82it/s]\n14it [00:02, 4.81it/s]\n15it [00:03, 4.81it/s]\n16it [00:03, 4.81it/s]\n17it [00:03, 4.80it/s]\n18it [00:03, 4.81it/s]\n19it [00:03, 4.81it/s]\n20it [00:04, 4.81it/s]\n21it [00:04, 4.81it/s]\n22it [00:04, 4.80it/s]\n23it [00:04, 4.80it/s]\n24it [00:04, 4.81it/s]\n25it [00:05, 4.81it/s]\n26it [00:05, 4.81it/s]\n27it [00:05, 4.81it/s]\n28it [00:05, 4.81it/s]\n28it [00:05, 4.88it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 6.04014835, "total_time": 6.045971 }, "output": [ "https://replicate.delivery/xezq/db1ENqkdlLrOFhAXpsaE6qN65Fc4wGPsy8RNehQswzPNeMfnA/out-0.webp" ], "started_at": "2024-12-27T21:33:08.339823Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-3cud7twqlrklogh4onn2itkbx2jdtnharofgwfwtabb5hks36nxq", "get": "https://api.replicate.com/v1/predictions/35rbq9wqdsrme0cm184r8rhknc", "cancel": "https://api.replicate.com/v1/predictions/35rbq9wqdsrme0cm184r8rhknc/cancel" }, "version": "491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1" }
Generated inLora https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar already loaded Using seed: 53199 0it [00:00, ?it/s] 1it [00:00, 8.35it/s] 2it [00:00, 5.85it/s] 3it [00:00, 5.34it/s] 4it [00:00, 5.12it/s] 5it [00:00, 5.00it/s] 6it [00:01, 4.93it/s] 7it [00:01, 4.89it/s] 8it [00:01, 4.87it/s] 9it [00:01, 4.85it/s] 10it [00:01, 4.84it/s] 11it [00:02, 4.82it/s] 12it [00:02, 4.82it/s] 13it [00:02, 4.82it/s] 14it [00:02, 4.81it/s] 15it [00:03, 4.81it/s] 16it [00:03, 4.81it/s] 17it [00:03, 4.80it/s] 18it [00:03, 4.81it/s] 19it [00:03, 4.81it/s] 20it [00:04, 4.81it/s] 21it [00:04, 4.81it/s] 22it [00:04, 4.80it/s] 23it [00:04, 4.80it/s] 24it [00:04, 4.81it/s] 25it [00:05, 4.81it/s] 26it [00:05, 4.81it/s] 27it [00:05, 4.81it/s] 28it [00:05, 4.81it/s] 28it [00:05, 4.88it/s] Total safe images: 1 out of 1
Prediction
lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1IDctymh91ef9rmc0cm1ry8kpj53cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a DALGONA cookie in a tin, with a triangle shape on top
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a triangle shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", { input: { model: "dev", prompt: "a DALGONA cookie in a tin, with a triangle shape on top", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", input={ "model": "dev", "prompt": "a DALGONA cookie in a tin, with a triangle shape on top", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-dalgona using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/flux-dalgona:491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a triangle shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-28T17:07:02.453331Z", "created_at": "2024-12-28T17:06:52.666000Z", "data_removed": false, "error": null, "id": "ctymh91ef9rmc0cm1ry8kpj53c", "input": { "model": "dev", "prompt": "a DALGONA cookie in a tin, with a triangle shape on top", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "2024-12-28 17:06:52.688 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-28 17:06:52.689 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2735.24it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2670.13it/s]\n2024-12-28 17:06:52.803 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=29314422382592\nDownloading weights\n2024-12-28T17:06:52Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp4y77m7b6/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\n2024-12-28T17:06:56Z | INFO | [ Complete ] dest=/tmp/tmp4y77m7b6/weights size=\"172 MB\" total_elapsed=3.397s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar\nDownloaded weights in 3.42s\n2024-12-28 17:06:56.229 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1\n2024-12-28 17:06:56.301 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2024-12-28 17:06:56.301 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-28 17:06:56.301 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2739.30it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2673.55it/s]\n2024-12-28 17:06:56.416 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 56948\n0it [00:00, ?it/s]\n1it [00:00, 8.35it/s]\n2it [00:00, 5.88it/s]\n3it [00:00, 5.37it/s]\n4it [00:00, 5.16it/s]\n5it [00:00, 5.05it/s]\n6it [00:01, 4.98it/s]\n7it [00:01, 4.94it/s]\n8it [00:01, 4.92it/s]\n9it [00:01, 4.90it/s]\n10it [00:01, 4.89it/s]\n11it [00:02, 4.88it/s]\n12it [00:02, 4.88it/s]\n13it [00:02, 4.87it/s]\n14it [00:02, 4.87it/s]\n15it [00:02, 4.87it/s]\n16it [00:03, 4.86it/s]\n17it [00:03, 4.86it/s]\n18it [00:03, 4.86it/s]\n19it [00:03, 4.86it/s]\n20it [00:04, 4.86it/s]\n21it [00:04, 4.86it/s]\n22it [00:04, 4.85it/s]\n23it [00:04, 4.85it/s]\n24it [00:04, 4.85it/s]\n25it [00:05, 4.86it/s]\n26it [00:05, 4.86it/s]\n27it [00:05, 4.85it/s]\n28it [00:05, 4.85it/s]\n28it [00:05, 4.93it/s]\nTotal safe images: 1 out of 1", "metrics": { "predict_time": 9.763528131, "total_time": 9.787331 }, "output": [ "https://replicate.delivery/xezq/lflrebUpHykS5kSe9NVTX70epKLdwUGFBeUtDmfeIPEKbEvfTA/out-0.webp" ], "started_at": "2024-12-28T17:06:52.689803Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-kxhb5wx6javq7wx5nlvzejxpapmobwl2i3ns2pz5gme6t4znespq", "get": "https://api.replicate.com/v1/predictions/ctymh91ef9rmc0cm1ry8kpj53c", "cancel": "https://api.replicate.com/v1/predictions/ctymh91ef9rmc0cm1ry8kpj53c/cancel" }, "version": "491e29bb79efa1f3853c1ad493e66a2fc688956d94049a9131d9f6512888f0d1" }
Generated in2024-12-28 17:06:52.688 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-28 17:06:52.689 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2735.24it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2670.13it/s] 2024-12-28 17:06:52.803 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s free=29314422382592 Downloading weights 2024-12-28T17:06:52Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp4y77m7b6/weights url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar 2024-12-28T17:06:56Z | INFO | [ Complete ] dest=/tmp/tmp4y77m7b6/weights size="172 MB" total_elapsed=3.397s url=https://replicate.delivery/xezq/6NXxN7RiEYYaMxuc8jV5pgzr9OhxPgqLUOCLoFdO3s4BLzfJA/trained_model.tar Downloaded weights in 3.42s 2024-12-28 17:06:56.229 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/77045a58eb98c8d1 2024-12-28 17:06:56.301 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded 2024-12-28 17:06:56.301 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys 2024-12-28 17:06:56.301 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s] Applying LoRA: 90%|█████████ | 275/304 [00:00<00:00, 2739.30it/s] Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2673.55it/s] 2024-12-28 17:06:56.416 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s Using seed: 56948 0it [00:00, ?it/s] 1it [00:00, 8.35it/s] 2it [00:00, 5.88it/s] 3it [00:00, 5.37it/s] 4it [00:00, 5.16it/s] 5it [00:00, 5.05it/s] 6it [00:01, 4.98it/s] 7it [00:01, 4.94it/s] 8it [00:01, 4.92it/s] 9it [00:01, 4.90it/s] 10it [00:01, 4.89it/s] 11it [00:02, 4.88it/s] 12it [00:02, 4.88it/s] 13it [00:02, 4.87it/s] 14it [00:02, 4.87it/s] 15it [00:02, 4.87it/s] 16it [00:03, 4.86it/s] 17it [00:03, 4.86it/s] 18it [00:03, 4.86it/s] 19it [00:03, 4.86it/s] 20it [00:04, 4.86it/s] 21it [00:04, 4.86it/s] 22it [00:04, 4.85it/s] 23it [00:04, 4.85it/s] 24it [00:04, 4.85it/s] 25it [00:05, 4.86it/s] 26it [00:05, 4.86it/s] 27it [00:05, 4.85it/s] 28it [00:05, 4.85it/s] 28it [00:05, 4.93it/s] Total safe images: 1 out of 1
Want to make some of these yourself?
Run this model