tuannha
/
easy-control
- Public
- 105 runs
-
L40S
Prediction
tuannha/easy-control:a8567ffdInput
- seed
- -1
- width
- 1024
- height
- 1024
- prompt
- A SKS in the library
- lora_weight
- 1
- guidance_scale
- 3.5
- num_inference_steps
- 25
{ "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS in the library", "lora_weight": 1, "subject_image": "https://replicate.delivery/pbxt/Mm003KufYhi45fTWcYglsPLLg0Hawqlef1sA1d0LuACcUMWF/subject_0.png", "guidance_scale": 3.5, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tuannha/easy-control using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tuannha/easy-control:a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422", { input: { seed: -1, width: 1024, height: 1024, prompt: "A SKS in the library", lora_weight: 1, subject_image: "https://replicate.delivery/pbxt/Mm003KufYhi45fTWcYglsPLLg0Hawqlef1sA1d0LuACcUMWF/subject_0.png", guidance_scale: 3.5, num_inference_steps: 25 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tuannha/easy-control using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tuannha/easy-control:a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422", input={ "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS in the library", "lora_weight": 1, "subject_image": "https://replicate.delivery/pbxt/Mm003KufYhi45fTWcYglsPLLg0Hawqlef1sA1d0LuACcUMWF/subject_0.png", "guidance_scale": 3.5, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tuannha/easy-control using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422", "input": { "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS in the library", "lora_weight": 1, "subject_image": "https://replicate.delivery/pbxt/Mm003KufYhi45fTWcYglsPLLg0Hawqlef1sA1d0LuACcUMWF/subject_0.png", "guidance_scale": 3.5, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-03T15:47:49.861523Z", "created_at": "2025-04-03T15:47:29.968000Z", "data_removed": false, "error": null, "id": "k8pf828261rm80cnzhbbnayv04", "input": { "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS in the library", "lora_weight": 1, "subject_image": "https://replicate.delivery/pbxt/Mm003KufYhi45fTWcYglsPLLg0Hawqlef1sA1d0LuACcUMWF/subject_0.png", "guidance_scale": 3.5, "num_inference_steps": 25 }, "logs": "Loading .safetensors checkpoint from ./models/EasyControl/models/subject.safetensors\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:18, 1.28it/s]\n 8%|▊ | 2/25 [00:01<00:14, 1.54it/s]\n 12%|█▏ | 3/25 [00:02<00:15, 1.44it/s]\n 16%|█▌ | 4/25 [00:02<00:14, 1.40it/s]\n 20%|██ | 5/25 [00:03<00:14, 1.38it/s]\n 24%|██▍ | 6/25 [00:04<00:13, 1.37it/s]\n 28%|██▊ | 7/25 [00:05<00:13, 1.36it/s]\n 32%|███▏ | 8/25 [00:05<00:12, 1.35it/s]\n 36%|███▌ | 9/25 [00:06<00:11, 1.35it/s]\n 40%|████ | 10/25 [00:07<00:11, 1.34it/s]\n 44%|████▍ | 11/25 [00:08<00:10, 1.34it/s]\n 48%|████▊ | 12/25 [00:08<00:09, 1.34it/s]\n 52%|█████▏ | 13/25 [00:09<00:08, 1.34it/s]\n 56%|█████▌ | 14/25 [00:10<00:08, 1.34it/s]\n 60%|██████ | 15/25 [00:11<00:07, 1.34it/s]\n 64%|██████▍ | 16/25 [00:11<00:06, 1.34it/s]\n 68%|██████▊ | 17/25 [00:12<00:05, 1.34it/s]\n 72%|███████▏ | 18/25 [00:13<00:05, 1.34it/s]\n 76%|███████▌ | 19/25 [00:14<00:04, 1.33it/s]\n 80%|████████ | 20/25 [00:14<00:03, 1.33it/s]\n 84%|████████▍ | 21/25 [00:15<00:02, 1.33it/s]\n 88%|████████▊ | 22/25 [00:16<00:02, 1.33it/s]\n 92%|█████████▏| 23/25 [00:17<00:01, 1.33it/s]\n 96%|█████████▌| 24/25 [00:17<00:00, 1.33it/s]\n100%|██████████| 25/25 [00:18<00:00, 1.33it/s]\n100%|██████████| 25/25 [00:18<00:00, 1.35it/s]", "metrics": { "predict_time": 19.884885035, "total_time": 19.893523 }, "output": "https://replicate.delivery/xezq/ga49NcUfeimtCUBDVzbKO7Esv58g9fIjF8MtlHWx8s1K9LeRB/4af21acd-2aaf-48bb-9e6b-53f82341d80a.png", "started_at": "2025-04-03T15:47:29.976638Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-safjelkfwc4khn6vrpfyii2sf4iom25bt5aocjt7casuohbwaxta", "get": "https://api.replicate.com/v1/predictions/k8pf828261rm80cnzhbbnayv04", "cancel": "https://api.replicate.com/v1/predictions/k8pf828261rm80cnzhbbnayv04/cancel" }, "version": "a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422" }
Generated inLoading .safetensors checkpoint from ./models/EasyControl/models/subject.safetensors 0%| | 0/25 [00:00<?, ?it/s] 4%|▍ | 1/25 [00:00<00:18, 1.28it/s] 8%|▊ | 2/25 [00:01<00:14, 1.54it/s] 12%|█▏ | 3/25 [00:02<00:15, 1.44it/s] 16%|█▌ | 4/25 [00:02<00:14, 1.40it/s] 20%|██ | 5/25 [00:03<00:14, 1.38it/s] 24%|██▍ | 6/25 [00:04<00:13, 1.37it/s] 28%|██▊ | 7/25 [00:05<00:13, 1.36it/s] 32%|███▏ | 8/25 [00:05<00:12, 1.35it/s] 36%|███▌ | 9/25 [00:06<00:11, 1.35it/s] 40%|████ | 10/25 [00:07<00:11, 1.34it/s] 44%|████▍ | 11/25 [00:08<00:10, 1.34it/s] 48%|████▊ | 12/25 [00:08<00:09, 1.34it/s] 52%|█████▏ | 13/25 [00:09<00:08, 1.34it/s] 56%|█████▌ | 14/25 [00:10<00:08, 1.34it/s] 60%|██████ | 15/25 [00:11<00:07, 1.34it/s] 64%|██████▍ | 16/25 [00:11<00:06, 1.34it/s] 68%|██████▊ | 17/25 [00:12<00:05, 1.34it/s] 72%|███████▏ | 18/25 [00:13<00:05, 1.34it/s] 76%|███████▌ | 19/25 [00:14<00:04, 1.33it/s] 80%|████████ | 20/25 [00:14<00:03, 1.33it/s] 84%|████████▍ | 21/25 [00:15<00:02, 1.33it/s] 88%|████████▊ | 22/25 [00:16<00:02, 1.33it/s] 92%|█████████▏| 23/25 [00:17<00:01, 1.33it/s] 96%|█████████▌| 24/25 [00:17<00:00, 1.33it/s] 100%|██████████| 25/25 [00:18<00:00, 1.33it/s] 100%|██████████| 25/25 [00:18<00:00, 1.35it/s]
Prediction
tuannha/easy-control:a8567ffdID7dkzpq656srma0cnzhb80995t4StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- seed
- -1
- width
- 1024
- height
- 1024
- prompt
- A SKS on the car
- lora_weight
- 1
- guidance_scale
- 3.5
- num_inference_steps
- 25
{ "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS on the car", "lora_weight": 1, "spatial_image": "https://replicate.delivery/pbxt/Mm00lFiDA0mTsolbNpyX2uLxTt2P4uhVzno6acgrmScfCWG5/inpainting.png", "subject_image": "https://replicate.delivery/pbxt/Mm00lzugSTOpWV0jjF0dDHR4TRplYGlfiBIEKQ3QMIovoaOj/subject_1.png", "guidance_scale": 3.5, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tuannha/easy-control using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tuannha/easy-control:a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422", { input: { seed: -1, width: 1024, height: 1024, prompt: "A SKS on the car", lora_weight: 1, spatial_image: "https://replicate.delivery/pbxt/Mm00lFiDA0mTsolbNpyX2uLxTt2P4uhVzno6acgrmScfCWG5/inpainting.png", subject_image: "https://replicate.delivery/pbxt/Mm00lzugSTOpWV0jjF0dDHR4TRplYGlfiBIEKQ3QMIovoaOj/subject_1.png", guidance_scale: 3.5, num_inference_steps: 25 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tuannha/easy-control using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tuannha/easy-control:a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422", input={ "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS on the car", "lora_weight": 1, "spatial_image": "https://replicate.delivery/pbxt/Mm00lFiDA0mTsolbNpyX2uLxTt2P4uhVzno6acgrmScfCWG5/inpainting.png", "subject_image": "https://replicate.delivery/pbxt/Mm00lzugSTOpWV0jjF0dDHR4TRplYGlfiBIEKQ3QMIovoaOj/subject_1.png", "guidance_scale": 3.5, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tuannha/easy-control using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422", "input": { "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS on the car", "lora_weight": 1, "spatial_image": "https://replicate.delivery/pbxt/Mm00lFiDA0mTsolbNpyX2uLxTt2P4uhVzno6acgrmScfCWG5/inpainting.png", "subject_image": "https://replicate.delivery/pbxt/Mm00lzugSTOpWV0jjF0dDHR4TRplYGlfiBIEKQ3QMIovoaOj/subject_1.png", "guidance_scale": 3.5, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-04-03T15:49:30.815544Z", "created_at": "2025-04-03T15:48:19.894000Z", "data_removed": false, "error": null, "id": "7dkzpq656srma0cnzhb80995t4", "input": { "seed": -1, "width": 1024, "height": 1024, "prompt": "A SKS on the car", "lora_weight": 1, "spatial_image": "https://replicate.delivery/pbxt/Mm00lFiDA0mTsolbNpyX2uLxTt2P4uhVzno6acgrmScfCWG5/inpainting.png", "subject_image": "https://replicate.delivery/pbxt/Mm00lzugSTOpWV0jjF0dDHR4TRplYGlfiBIEKQ3QMIovoaOj/subject_1.png", "guidance_scale": 3.5, "num_inference_steps": 25 }, "logs": "Loading .safetensors checkpoint from ./models/EasyControl/models/subject.safetensors\nLoading .safetensors checkpoint from ./models/EasyControl/models/inpainting.safetensors\n<PIL.Image.Image image mode=RGB size=1398x1382 at 0x78F749ED3D60>\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:23, 1.02it/s]\n 8%|▊ | 2/25 [00:01<00:18, 1.24it/s]\n 12%|█▏ | 3/25 [00:02<00:18, 1.16it/s]\n 16%|█▌ | 4/25 [00:03<00:18, 1.13it/s]\n 20%|██ | 5/25 [00:04<00:17, 1.11it/s]\n 24%|██▍ | 6/25 [00:05<00:17, 1.10it/s]\n 28%|██▊ | 7/25 [00:06<00:16, 1.10it/s]\n 32%|███▏ | 8/25 [00:07<00:15, 1.09it/s]\n 36%|███▌ | 9/25 [00:08<00:14, 1.09it/s]\n 40%|████ | 10/25 [00:09<00:13, 1.08it/s]\n 44%|████▍ | 11/25 [00:09<00:12, 1.08it/s]\n 48%|████▊ | 12/25 [00:10<00:12, 1.08it/s]\n 52%|█████▏ | 13/25 [00:11<00:11, 1.08it/s]\n 56%|█████▌ | 14/25 [00:12<00:10, 1.08it/s]\n 60%|██████ | 15/25 [00:13<00:09, 1.08it/s]\n 64%|██████▍ | 16/25 [00:14<00:08, 1.08it/s]\n 68%|██████▊ | 17/25 [00:15<00:07, 1.08it/s]\n 72%|███████▏ | 18/25 [00:16<00:06, 1.08it/s]\n 76%|███████▌ | 19/25 [00:17<00:05, 1.08it/s]\n 80%|████████ | 20/25 [00:18<00:04, 1.08it/s]\n 84%|████████▍ | 21/25 [00:19<00:03, 1.08it/s]\n 88%|████████▊ | 22/25 [00:20<00:02, 1.08it/s]\n 92%|█████████▏| 23/25 [00:21<00:01, 1.07it/s]\n 96%|█████████▌| 24/25 [00:22<00:00, 1.07it/s]\n100%|██████████| 25/25 [00:23<00:00, 1.07it/s]\n100%|██████████| 25/25 [00:23<00:00, 1.09it/s]", "metrics": { "predict_time": 27.897000683999998, "total_time": 70.921544 }, "output": "https://replicate.delivery/xezq/Tj0xGiMwnqLLIdu2XzLZfX4ekY0YGOsItTqfUDNkodTVAMeRB/6907c228-94ea-461e-a076-88a5271f2807.png", "started_at": "2025-04-03T15:49:02.918544Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-jwbdn6e7ckxyyxkreaphwlde7a4qck4vo4jr6n4r66vh3s442yea", "get": "https://api.replicate.com/v1/predictions/7dkzpq656srma0cnzhb80995t4", "cancel": "https://api.replicate.com/v1/predictions/7dkzpq656srma0cnzhb80995t4/cancel" }, "version": "a8567ffd1d8521c32e47d33f7c0672603e64f57b3b4e070a7831e1fe759db422" }
Generated inLoading .safetensors checkpoint from ./models/EasyControl/models/subject.safetensors Loading .safetensors checkpoint from ./models/EasyControl/models/inpainting.safetensors <PIL.Image.Image image mode=RGB size=1398x1382 at 0x78F749ED3D60> 0%| | 0/25 [00:00<?, ?it/s] 4%|▍ | 1/25 [00:00<00:23, 1.02it/s] 8%|▊ | 2/25 [00:01<00:18, 1.24it/s] 12%|█▏ | 3/25 [00:02<00:18, 1.16it/s] 16%|█▌ | 4/25 [00:03<00:18, 1.13it/s] 20%|██ | 5/25 [00:04<00:17, 1.11it/s] 24%|██▍ | 6/25 [00:05<00:17, 1.10it/s] 28%|██▊ | 7/25 [00:06<00:16, 1.10it/s] 32%|███▏ | 8/25 [00:07<00:15, 1.09it/s] 36%|███▌ | 9/25 [00:08<00:14, 1.09it/s] 40%|████ | 10/25 [00:09<00:13, 1.08it/s] 44%|████▍ | 11/25 [00:09<00:12, 1.08it/s] 48%|████▊ | 12/25 [00:10<00:12, 1.08it/s] 52%|█████▏ | 13/25 [00:11<00:11, 1.08it/s] 56%|█████▌ | 14/25 [00:12<00:10, 1.08it/s] 60%|██████ | 15/25 [00:13<00:09, 1.08it/s] 64%|██████▍ | 16/25 [00:14<00:08, 1.08it/s] 68%|██████▊ | 17/25 [00:15<00:07, 1.08it/s] 72%|███████▏ | 18/25 [00:16<00:06, 1.08it/s] 76%|███████▌ | 19/25 [00:17<00:05, 1.08it/s] 80%|████████ | 20/25 [00:18<00:04, 1.08it/s] 84%|████████▍ | 21/25 [00:19<00:03, 1.08it/s] 88%|████████▊ | 22/25 [00:20<00:02, 1.08it/s] 92%|█████████▏| 23/25 [00:21<00:01, 1.07it/s] 96%|█████████▌| 24/25 [00:22<00:00, 1.07it/s] 100%|██████████| 25/25 [00:23<00:00, 1.07it/s] 100%|██████████| 25/25 [00:23<00:00, 1.09it/s]
Want to make some of these yourself?
Run this model