victor-upmeet / whisperx-a40-large

Accelerated transcription, word-level timestamps and diarization with whisperX large-v3 for large audio files

  • Public
  • 48K runs
  • GitHub
  • Paper
  • License

Run time and cost

This model costs approximately $0.066 to run on Replicate, or 15 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.

This model runs on Nvidia A40 (Large) GPU hardware. Predictions typically complete within 91 seconds. The predict time for this model varies significantly based on the inputs.

Readme

General

This model is a clone of victor-upmeet/whisperx.

The purpose of this model is to offer the possibility to transcribe large audio files (a few 100 MB / a few hours long), which victor-upmeet/whisperx is not able to do due to its available RAM. Please try victor-upmeet/whisperx first, and if the model fails due to an unknown error and if you have a large audio file, you can use this model instead.

Model Information

WhisperX provides fast automatic speech recognition (70x realtime with large-v3) with word-level timestamps and speaker diarization.

Whisper is an ASR model developed by OpenAI, trained on a large dataset of diverse audio. Whilst it does produces highly accurate transcriptions, the corresponding timestamps are at the utterance-level, not per word, and can be inaccurate by several seconds. OpenAI’s whisper does not natively support batching, but WhisperX does.

Model used is for transcription is large-v3 from faster-whisper.

For more information about WhisperX, including implementation details, see the WhisperX github repo.

Citation

@misc{bain2023whisperx,
      title={WhisperX: Time-Accurate Speech Transcription of Long-Form Audio}, 
      author={Max Bain and Jaesung Huh and Tengda Han and Andrew Zisserman},
      year={2023},
      eprint={2303.00747},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}