You're looking at a specific version of this model. Jump to the model overview.

batouresearch /magic-style-transfer:3b5fa5d3

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
An astronaut riding a rainbow unicorn
Input prompt
image
string
Input image
ip_image
string
Input image for img2img or inpaint mode
condition_depth_scale
number
0.35

Max: 2

The bigger this number is, the more ControlNet interferes
condition_canny_scale
number
0.15

Max: 2

The bigger this number is, the more ControlNet interferes
lora_scale
number
0.9

Max: 1

LoRA additive scale. Only applicable on trained models.
ip_scale
number
0.3

Max: 1

IP Adapter strength.
strength
number
0.9

Max: 1

When img2img is active, the denoising strength. 1 means total destruction of the input image.
negative_prompt
string
Input Negative Prompt
background_color
string
#A2A2A2
When passing an image with alpha channel, it will be replaced with this color
resizing_scale
number
1

Min: 1

Max: 10

If you want the image to have a solid margin. Scale of the solid margin. 1.0 means no resizing.
num_inference_steps
integer
30

Min: 1

Max: 500

Number of denoising steps
num_outputs
integer
1

Min: 1

Max: 4

Number of images to output
scheduler
string (enum)
K_EULER

Options:

DDIM, DPMSolverMultistep, HeunDiscrete, KarrasDPM, K_EULER_ANCESTRAL, K_EULER, PNDM

scheduler
guidance_scale
number
4

Min: 1

Max: 50

Scale for classifier-free guidance
seed
integer
Random seed. Leave blank to randomize the seed
apply_watermark
boolean
True
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
lora_weights
string
Replicate LoRA weights to use. Leave blank to use the default weights.

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array'}