You're looking at a specific version of this model. Jump to the model overview.
lucataco /diffusers-dreambooth-lora:6d00f7b2
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
input_images |
string
|
A zip file containing the images that will be used for training.
|
|
instance_prompt |
string
|
a photo of TOK dog
|
Instance prompt to trigger the image generation
|
resolution |
integer
|
768
Min: 128 Max: 1024 |
The resolution for input images, all the images in the train/validation dataset will be resized to this
|
train_batch_size |
integer
|
1
Min: 1 Max: 8 |
Batch size for the training dataloader
|
gradient_accumulation_steps |
integer
|
1
Min: 1 Max: 8 |
Number of updates steps to accumulate before performing a backward/update pass
|
learning_rate |
number
|
0.0001
Min: 0.0001 Max: 0.01 |
Initial learning rate to use
|
lr_scheduler |
string
(enum)
|
constant
Options: linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup |
'The scheduler type to use
|
max_train_steps |
integer
|
500
Min: 10 Max: 6000 |
Total number of training steps to perform
|
checkpointing_steps |
integer
|
Min: 100 Max: 6000 |
Save a checkpoint of the training state every X updates
|
seed |
integer
|
Seed for reproducibility
|
|
hf_token |
string
|
Huggingface token (optional) with write access to upload to HF
|
|
hub_model_id |
string
|
Huggingface model location for upload. Requires HF token. Ex: lucataco/dreambooth-lora
|
Output schema
The shape of the response you’ll get when you run this model with an API.
{'format': 'uri', 'title': 'Output', 'type': 'string'}