You're looking at a specific version of this model. Jump to the model overview.

lucataco /diffusers-dreambooth-lora:6d00f7b2

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
input_images
string
A zip file containing the images that will be used for training.
instance_prompt
string
a photo of TOK dog
Instance prompt to trigger the image generation
resolution
integer
768

Min: 128

Max: 1024

The resolution for input images, all the images in the train/validation dataset will be resized to this
train_batch_size
integer
1

Min: 1

Max: 8

Batch size for the training dataloader
gradient_accumulation_steps
integer
1

Min: 1

Max: 8

Number of updates steps to accumulate before performing a backward/update pass
learning_rate
number
0.0001

Min: 0.0001

Max: 0.01

Initial learning rate to use
lr_scheduler
string (enum)
constant

Options:

linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup

'The scheduler type to use
max_train_steps
integer
500

Min: 10

Max: 6000

Total number of training steps to perform
checkpointing_steps
integer

Min: 100

Max: 6000

Save a checkpoint of the training state every X updates
seed
integer
Seed for reproducibility
hf_token
string
Huggingface token (optional) with write access to upload to HF
hub_model_id
string
Huggingface model location for upload. Requires HF token. Ex: lucataco/dreambooth-lora

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'format': 'uri', 'title': 'Output', 'type': 'string'}