Readme
…
Model description
…
Intended use
…
Ethical considerations
…
Caveats and recommendations
…
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run pratos/stable-diffusion-2-1-512 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"pratos/stable-diffusion-2-1-512:4ec7e01500986d7755dc7fae5109b6c642da9edef0eca9d7cbfbfff1713f9089",
{
input: {
seed: -1,
prompt: "A gentleman otter",
cfg_scale: 7.5,
img_width: 768,
scheduler: "euler",
img_height: 768,
vae_slicing: 0,
negative_prompt: "((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), out of frame, extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
num_output_images: 1,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run pratos/stable-diffusion-2-1-512 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"pratos/stable-diffusion-2-1-512:4ec7e01500986d7755dc7fae5109b6c642da9edef0eca9d7cbfbfff1713f9089",
input={
"seed": -1,
"prompt": "A gentleman otter",
"cfg_scale": 7.5,
"img_width": 768,
"scheduler": "euler",
"img_height": 768,
"vae_slicing": 0,
"negative_prompt": "((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), out of frame, extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
"num_output_images": 1,
"num_inference_steps": 50
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run pratos/stable-diffusion-2-1-512 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "pratos/stable-diffusion-2-1-512:4ec7e01500986d7755dc7fae5109b6c642da9edef0eca9d7cbfbfff1713f9089",
"input": {
"seed": -1,
"prompt": "A gentleman otter",
"cfg_scale": 7.5,
"img_width": 768,
"scheduler": "euler",
"img_height": 768,
"vae_slicing": 0,
"negative_prompt": "((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), out of frame, extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
"num_output_images": 1,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2022-12-22T22:56:09.880450Z",
"created_at": "2022-12-22T22:55:59.202829Z",
"data_removed": false,
"error": null,
"id": "d6boiywj3rgtxfgjpdofk62eja",
"input": {
"seed": -1,
"prompt": "A gentleman otter",
"cfg_scale": 7.5,
"img_width": "768",
"scheduler": "euler",
"img_height": "768",
"negative_prompt": "((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), out of frame, extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))",
"num_output_images": 1,
"num_inference_steps": 50
},
"logs": "Using seed 82372 with A gentleman otter\nGenerating images...\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<01:29, 1.82s/it]\n 4%|▍ | 2/50 [00:01<00:39, 1.23it/s]\n 6%|▌ | 3/50 [00:02<00:23, 2.03it/s]\n 8%|▊ | 4/50 [00:02<00:15, 2.94it/s]\n 10%|█ | 5/50 [00:02<00:11, 3.89it/s]\n 12%|█▏ | 6/50 [00:02<00:09, 4.84it/s]\n 14%|█▍ | 7/50 [00:02<00:07, 5.73it/s]\n 16%|█▌ | 8/50 [00:02<00:06, 6.51it/s]\n 18%|█▊ | 9/50 [00:02<00:05, 7.16it/s]\n 20%|██ | 10/50 [00:02<00:05, 7.68it/s]\n 22%|██▏ | 11/50 [00:02<00:04, 8.09it/s]\n 24%|██▍ | 12/50 [00:03<00:04, 8.39it/s]\n 26%|██▌ | 13/50 [00:03<00:04, 8.62it/s]\n 28%|██▊ | 14/50 [00:03<00:04, 8.79it/s]\n 30%|███ | 15/50 [00:03<00:03, 8.91it/s]\n 32%|███▏ | 16/50 [00:03<00:03, 8.99it/s]\n 34%|███▍ | 17/50 [00:03<00:03, 9.05it/s]\n 36%|███▌ | 18/50 [00:03<00:03, 9.09it/s]\n 38%|███▊ | 19/50 [00:03<00:03, 9.11it/s]\n 40%|████ | 20/50 [00:03<00:03, 9.12it/s]\n 42%|████▏ | 21/50 [00:03<00:03, 9.14it/s]\n 44%|████▍ | 22/50 [00:04<00:03, 9.16it/s]\n 46%|████▌ | 23/50 [00:04<00:02, 9.16it/s]\n 48%|████▊ | 24/50 [00:04<00:02, 9.18it/s]\n 50%|█████ | 25/50 [00:04<00:02, 9.18it/s]\n 52%|█████▏ | 26/50 [00:04<00:02, 9.18it/s]\n 54%|█████▍ | 27/50 [00:04<00:02, 9.18it/s]\n 56%|█████▌ | 28/50 [00:04<00:02, 9.17it/s]\n 58%|█████▊ | 29/50 [00:04<00:02, 9.16it/s]\n 60%|██████ | 30/50 [00:04<00:02, 9.17it/s]\n 62%|██████▏ | 31/50 [00:05<00:02, 9.17it/s]\n 64%|██████▍ | 32/50 [00:05<00:01, 9.18it/s]\n 66%|██████▌ | 33/50 [00:05<00:01, 9.18it/s]\n 68%|██████▊ | 34/50 [00:05<00:01, 9.18it/s]\n 70%|███████ | 35/50 [00:05<00:01, 9.18it/s]\n 72%|███████▏ | 36/50 [00:05<00:01, 9.18it/s]\n 74%|███████▍ | 37/50 [00:05<00:01, 9.08it/s]\n 76%|███████▌ | 38/50 [00:05<00:01, 9.09it/s]\n 78%|███████▊ | 39/50 [00:05<00:01, 9.12it/s]\n 80%|████████ | 40/50 [00:06<00:01, 9.14it/s]\n 82%|████████▏ | 41/50 [00:06<00:00, 9.15it/s]\n 84%|████████▍ | 42/50 [00:06<00:00, 9.16it/s]\n 86%|████████▌ | 43/50 [00:06<00:00, 9.17it/s]\n 88%|████████▊ | 44/50 [00:06<00:00, 9.18it/s]\n 90%|█████████ | 45/50 [00:06<00:00, 9.18it/s]\n 92%|█████████▏| 46/50 [00:06<00:00, 9.18it/s]\n 94%|█████████▍| 47/50 [00:06<00:00, 9.18it/s]\n 96%|█████████▌| 48/50 [00:06<00:00, 9.18it/s]\n 98%|█████████▊| 49/50 [00:07<00:00, 9.19it/s]\n100%|██████████| 50/50 [00:07<00:00, 9.19it/s]\n100%|██████████| 50/50 [00:07<00:00, 6.98it/s]\nImages generation done.",
"metrics": {
"predict_time": 10.633876,
"total_time": 10.677621
},
"output": [
"https://replicate.delivery/pbxt/D83rtqQrJkatLdr01gckyPcHCOL5F7a9hD2UuJRJIReElUGIA/output_0_A%20gentleman%20otter.png"
],
"started_at": "2022-12-22T22:55:59.246574Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/d6boiywj3rgtxfgjpdofk62eja",
"cancel": "https://api.replicate.com/v1/predictions/d6boiywj3rgtxfgjpdofk62eja/cancel"
},
"version": "4ec7e01500986d7755dc7fae5109b6c642da9edef0eca9d7cbfbfff1713f9089"
}
Using seed 82372 with A gentleman otter
Generating images...
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<01:29, 1.82s/it]
4%|▍ | 2/50 [00:01<00:39, 1.23it/s]
6%|▌ | 3/50 [00:02<00:23, 2.03it/s]
8%|▊ | 4/50 [00:02<00:15, 2.94it/s]
10%|█ | 5/50 [00:02<00:11, 3.89it/s]
12%|█▏ | 6/50 [00:02<00:09, 4.84it/s]
14%|█▍ | 7/50 [00:02<00:07, 5.73it/s]
16%|█▌ | 8/50 [00:02<00:06, 6.51it/s]
18%|█▊ | 9/50 [00:02<00:05, 7.16it/s]
20%|██ | 10/50 [00:02<00:05, 7.68it/s]
22%|██▏ | 11/50 [00:02<00:04, 8.09it/s]
24%|██▍ | 12/50 [00:03<00:04, 8.39it/s]
26%|██▌ | 13/50 [00:03<00:04, 8.62it/s]
28%|██▊ | 14/50 [00:03<00:04, 8.79it/s]
30%|███ | 15/50 [00:03<00:03, 8.91it/s]
32%|███▏ | 16/50 [00:03<00:03, 8.99it/s]
34%|███▍ | 17/50 [00:03<00:03, 9.05it/s]
36%|███▌ | 18/50 [00:03<00:03, 9.09it/s]
38%|███▊ | 19/50 [00:03<00:03, 9.11it/s]
40%|████ | 20/50 [00:03<00:03, 9.12it/s]
42%|████▏ | 21/50 [00:03<00:03, 9.14it/s]
44%|████▍ | 22/50 [00:04<00:03, 9.16it/s]
46%|████▌ | 23/50 [00:04<00:02, 9.16it/s]
48%|████▊ | 24/50 [00:04<00:02, 9.18it/s]
50%|█████ | 25/50 [00:04<00:02, 9.18it/s]
52%|█████▏ | 26/50 [00:04<00:02, 9.18it/s]
54%|█████▍ | 27/50 [00:04<00:02, 9.18it/s]
56%|█████▌ | 28/50 [00:04<00:02, 9.17it/s]
58%|█████▊ | 29/50 [00:04<00:02, 9.16it/s]
60%|██████ | 30/50 [00:04<00:02, 9.17it/s]
62%|██████▏ | 31/50 [00:05<00:02, 9.17it/s]
64%|██████▍ | 32/50 [00:05<00:01, 9.18it/s]
66%|██████▌ | 33/50 [00:05<00:01, 9.18it/s]
68%|██████▊ | 34/50 [00:05<00:01, 9.18it/s]
70%|███████ | 35/50 [00:05<00:01, 9.18it/s]
72%|███████▏ | 36/50 [00:05<00:01, 9.18it/s]
74%|███████▍ | 37/50 [00:05<00:01, 9.08it/s]
76%|███████▌ | 38/50 [00:05<00:01, 9.09it/s]
78%|███████▊ | 39/50 [00:05<00:01, 9.12it/s]
80%|████████ | 40/50 [00:06<00:01, 9.14it/s]
82%|████████▏ | 41/50 [00:06<00:00, 9.15it/s]
84%|████████▍ | 42/50 [00:06<00:00, 9.16it/s]
86%|████████▌ | 43/50 [00:06<00:00, 9.17it/s]
88%|████████▊ | 44/50 [00:06<00:00, 9.18it/s]
90%|█████████ | 45/50 [00:06<00:00, 9.18it/s]
92%|█████████▏| 46/50 [00:06<00:00, 9.18it/s]
94%|█████████▍| 47/50 [00:06<00:00, 9.18it/s]
96%|█████████▌| 48/50 [00:06<00:00, 9.18it/s]
98%|█████████▊| 49/50 [00:07<00:00, 9.19it/s]
100%|██████████| 50/50 [00:07<00:00, 9.19it/s]
100%|██████████| 50/50 [00:07<00:00, 6.98it/s]
Images generation done.
This model costs approximately $0.0080 to run on Replicate, or 125 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia A100 (80GB) GPU hardware. Predictions typically complete within 6 seconds.
…
…
…
…
…
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.0080 to run on Replicate, but this varies depending on your inputs. View more.
Using seed 82372 with A gentleman otter
Generating images...
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<01:29, 1.82s/it]
4%|▍ | 2/50 [00:01<00:39, 1.23it/s]
6%|▌ | 3/50 [00:02<00:23, 2.03it/s]
8%|▊ | 4/50 [00:02<00:15, 2.94it/s]
10%|█ | 5/50 [00:02<00:11, 3.89it/s]
12%|█▏ | 6/50 [00:02<00:09, 4.84it/s]
14%|█▍ | 7/50 [00:02<00:07, 5.73it/s]
16%|█▌ | 8/50 [00:02<00:06, 6.51it/s]
18%|█▊ | 9/50 [00:02<00:05, 7.16it/s]
20%|██ | 10/50 [00:02<00:05, 7.68it/s]
22%|██▏ | 11/50 [00:02<00:04, 8.09it/s]
24%|██▍ | 12/50 [00:03<00:04, 8.39it/s]
26%|██▌ | 13/50 [00:03<00:04, 8.62it/s]
28%|██▊ | 14/50 [00:03<00:04, 8.79it/s]
30%|███ | 15/50 [00:03<00:03, 8.91it/s]
32%|███▏ | 16/50 [00:03<00:03, 8.99it/s]
34%|███▍ | 17/50 [00:03<00:03, 9.05it/s]
36%|███▌ | 18/50 [00:03<00:03, 9.09it/s]
38%|███▊ | 19/50 [00:03<00:03, 9.11it/s]
40%|████ | 20/50 [00:03<00:03, 9.12it/s]
42%|████▏ | 21/50 [00:03<00:03, 9.14it/s]
44%|████▍ | 22/50 [00:04<00:03, 9.16it/s]
46%|████▌ | 23/50 [00:04<00:02, 9.16it/s]
48%|████▊ | 24/50 [00:04<00:02, 9.18it/s]
50%|█████ | 25/50 [00:04<00:02, 9.18it/s]
52%|█████▏ | 26/50 [00:04<00:02, 9.18it/s]
54%|█████▍ | 27/50 [00:04<00:02, 9.18it/s]
56%|█████▌ | 28/50 [00:04<00:02, 9.17it/s]
58%|█████▊ | 29/50 [00:04<00:02, 9.16it/s]
60%|██████ | 30/50 [00:04<00:02, 9.17it/s]
62%|██████▏ | 31/50 [00:05<00:02, 9.17it/s]
64%|██████▍ | 32/50 [00:05<00:01, 9.18it/s]
66%|██████▌ | 33/50 [00:05<00:01, 9.18it/s]
68%|██████▊ | 34/50 [00:05<00:01, 9.18it/s]
70%|███████ | 35/50 [00:05<00:01, 9.18it/s]
72%|███████▏ | 36/50 [00:05<00:01, 9.18it/s]
74%|███████▍ | 37/50 [00:05<00:01, 9.08it/s]
76%|███████▌ | 38/50 [00:05<00:01, 9.09it/s]
78%|███████▊ | 39/50 [00:05<00:01, 9.12it/s]
80%|████████ | 40/50 [00:06<00:01, 9.14it/s]
82%|████████▏ | 41/50 [00:06<00:00, 9.15it/s]
84%|████████▍ | 42/50 [00:06<00:00, 9.16it/s]
86%|████████▌ | 43/50 [00:06<00:00, 9.17it/s]
88%|████████▊ | 44/50 [00:06<00:00, 9.18it/s]
90%|█████████ | 45/50 [00:06<00:00, 9.18it/s]
92%|█████████▏| 46/50 [00:06<00:00, 9.18it/s]
94%|█████████▍| 47/50 [00:06<00:00, 9.18it/s]
96%|█████████▌| 48/50 [00:06<00:00, 9.18it/s]
98%|█████████▊| 49/50 [00:07<00:00, 9.19it/s]
100%|██████████| 50/50 [00:07<00:00, 9.19it/s]
100%|██████████| 50/50 [00:07<00:00, 6.98it/s]
Images generation done.