usamaehsan / instant-id-x-juggernaut

  • Public
  • 94.4K runs
  • L40S
Iterate in playground

Input

string
Shift + Return to add a new line

Input prompt

Default: "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"

file
Preview
image

Input image

file

face image2

file

pose image

string
Shift + Return to add a new line

Input Negative Prompt

Default: ""

integer
(minimum: 0, maximum: 2048)

Width for face detection

Default: 640

integer
(minimum: 0, maximum: 2048)

Height for face detection

Default: 640

string

Choose a scheduler.

Default: "UniPCMultistep"

integer
(minimum: 0, maximum: 2048)

min resolution // if resize image is on

Default: 1024

integer
(minimum: 0, maximum: 2048)

min resolution // if resize image is on

Default: 1280

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

number
(minimum: 0, maximum: 5)

Scale for IP adapter

Default: 0.8

number
(minimum: 0, maximum: 5)

Scale for ControlNet conditioning

Default: 0.8

number
(minimum: 0, maximum: 5)

Scale for ControlNet conditioning

Default: 0.8

integer
(minimum: 1, maximum: 500)

Number of denoising steps

Default: 30

number
(minimum: 1, maximum: 50)

Scale for classifier-free guidance

Default: 5

number

disabled on 0

Default: 0

number

disabled on 0 --> i thinkkk

Default: 0

Output

output
Generated in

This output was created using a different version of the model, usamaehsan/instant-id-x-juggernaut:3af6cc3f.

Run time and cost

This model costs approximately $2.84 to run on Replicate, or 0 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.

This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 49 minutes. The predict time for this model varies significantly based on the inputs.

Readme

This model doesn't have a readme.