Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
zust-ai /zust-diffusion:7f487e16
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run zust-ai/zust-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"zust-ai/zust-diffusion:7f487e1667bd2875d31863cbd177debae0a30132c747f4893262d8857bb54561",
{
input: {
width: 768,
height: 768,
prompt: "standing on a dark marble platform, heavy shadow, in an outdoor patio, plants, flowers, fairy lights",
subjects: "[{\"top\": 0.15885416666666666, \"left\": 0.2916666666666667, \"scale\": 0.0013020833333333333, \"image_url\": \"https://raw.githubusercontent.com/zust-ai/product-ai-training/main/test/test_subject.png\"}]",
pipe_type: "txt2img",
with_detail: false,
is_heartbeat: false,
negative_prompt: "text, signature, watermark, epic_negative:0.9",
prompt_strength: 5,
num_inference_steps: 30,
num_images_per_prompt: 1
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run zust-ai/zust-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"zust-ai/zust-diffusion:7f487e1667bd2875d31863cbd177debae0a30132c747f4893262d8857bb54561",
input={
"width": 768,
"height": 768,
"prompt": "standing on a dark marble platform, heavy shadow, in an outdoor patio, plants, flowers, fairy lights",
"subjects": "[{\"top\": 0.15885416666666666, \"left\": 0.2916666666666667, \"scale\": 0.0013020833333333333, \"image_url\": \"https://raw.githubusercontent.com/zust-ai/product-ai-training/main/test/test_subject.png\"}]",
"pipe_type": "txt2img",
"with_detail": False,
"is_heartbeat": False,
"negative_prompt": "text, signature, watermark, epic_negative:0.9",
"prompt_strength": 5,
"num_inference_steps": 30,
"num_images_per_prompt": 1
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run zust-ai/zust-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "zust-ai/zust-diffusion:7f487e1667bd2875d31863cbd177debae0a30132c747f4893262d8857bb54561",
"input": {
"width": 768,
"height": 768,
"prompt": "standing on a dark marble platform, heavy shadow, in an outdoor patio, plants, flowers, fairy lights",
"subjects": "[{\\"top\\": 0.15885416666666666, \\"left\\": 0.2916666666666667, \\"scale\\": 0.0013020833333333333, \\"image_url\\": \\"https://raw.githubusercontent.com/zust-ai/product-ai-training/main/test/test_subject.png\\"}]",
"pipe_type": "txt2img",
"with_detail": false,
"is_heartbeat": false,
"negative_prompt": "text, signature, watermark, epic_negative:0.9",
"prompt_strength": 5,
"num_inference_steps": 30,
"num_images_per_prompt": 1
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.